nuclear astrophysics theory and FRIB

Rebecca Surman University of Notre Dame

FRIB Day 1 Workshop LECM 2017

Argonne National Lab 2 August 2017

Office of Science

JINA-CEE

overview of FRIB theory

Topic	Theory development needed
Forces	Effective field theory (EFT) constants from LQCD; Improved optimization of chiral forces, with and without Δ ; Consistent
	operators and power counting for chiral EFT.
Nuclear struc-	Connect realistic nuclear forces to shell model and DFT; Microscopic optical potential that incorporates many-body
ture	correlations.
Medium mass	Properties of nuclei with validated ab-initio techniques; Shell-model effective interactions and operators derived and/or
nuclei	constrained from microscopic interactions, with controlled uncertainties; Unified treatment of structure and reactions.
Heavy nuclei	DFT constrained by rare isotope data and ab-initio theory; Beyond-DFT treatment of open shell systems; calculations of
	Schiff and anapole moments.
	Improved DFT-based adiabatic models of the large-amplitude collective motion; Implementation of TDDFT and multi-
	reference DFT approaches; Effective field theory for collective nuclear phenomena based on powerful existing phenomenol-
	ogy.
	Implementation of proton-neutron, symmetry-projected multi-reference DFT and large-scale shell model to compute
	nuclear matrix elements for double-beta decay.
	Masses and beta-decay rates, calculated from DFTs and combined with experiment.
Neutron stars	Controlled calculations of the nuclear equation of state for all relevant densities including extrapolations to high densities
	with known uncertainties; Improve constraints on nuclear EOS by identifying observables most sensitive to the high-
	density behavior of nuclear symmetry energy; Calculate structure in neutron star crust at various densities (ground state
	and response functions).
Reactions	Ab-initio reaction theory, consistent with nuclear structure, with quantified uncertainties, adequate for many domains of
	experimental interest, including radiative capture, transfer, charge-exchange, breakup of dripline nuclei and superheavy
	synthesis to estimate production of nuclei at and beyond the dripline and to extract structural information.
	Microscopic theory of spontaneous and neutron-induced fission; Ab-initio theory for light-ion fusion.
	Reaction theory for compound nucleus formation consistent with structure.
	Reliable transport theory with quantified errors, including a quantum formulation with correlations, for heavy-ion reactions
A . 1 .	from low to intermediate energies.
Astrophysics	Advanced simulations of compact objects; supernova, binary neutron star mergers and related explosive phenomena;
	Nucleosynthesis and chemical evolution simulations with up-to-date nuclear input; Neutrino interactions with nuclei in hot and dange nuclear motion including neutrino agaillations. Hadrodemonics and neutrino transport in sterms Granding
	in stallar plasma consistent with reaction theory
	In stenar prasma consistent with reaction theory.
= 0	

from the FRIB Theory Alliance proposal

nuclear astrophysics: role of theory

astrophysical conditions dense matter properties neutrino physics

Neutron stars Astrophysics astrophysical simulations + nuclear network

calculations

nuclear physics inputs: masses, halflives, reaction rates, fission yields

> contributions from Nuclear structure Medium mass nuclei Heavy nuclei Reactions

abundance pattern predictions

comparison to astrophysical observables

overview of nuclear astrophysical processes

R Surman FRIB Day 1 Works 2 August 2017

overview of nuclear astrophysical processes

Fission

r-process

The Nuclear Lattice EFT Collaboration is working on ab initio calculations of elastic α -¹²C scattering, near-threshold ¹⁶O bound states, asymptotic normalization coefficients, near-threshold ¹⁶O resonances, and the astrophysical S-factor for ¹²C(α , γ)¹⁶O. These calculations use the adiabatic projection method and are part of the NUCLEI SciDAC proposal.

Number of Proto xplored Territory 50 vp-proces Supernova EC process 28 rp-proce Nuclei known 20 eutron star crust to exist from Frank Timmes / process Hendrik Schatz/ 8 Artemis Spyrou 50 126 20 28 82 Number of Neutrons

Dean Lee, MSU

Neutron-rich Matter in Heaven and Earth

CHANDRA X-RAY OBSERVATORY Measurements of large neutron skins of exotic nuclei at FRIB will have a dramatic impact on our understanding of the structure and composition of neutron stars

Laboratory Experiments

Neutron skins highly sensitive to the EOS of neutron-rich matter

Observations of neutron star radii

Measurements of stellar radii sensitive to EOS around $2\rho_0$

JorgeNeutron-Star Mergers and gravitational wavesFSUMay constrain neutron-star radii to better than 1km

experimental prospects at FRIB: masses

experimental prospects at FRIB: masses

R Surman FRIB Day 1 Wo 2 August 2017

А

200

experimental prospects at FRIB: neutron capture

KADONIS FRIB (d,p) FRIB beta Oslo

III.

 \square

Transfer reactions to constrain neutron capture

- DSD n capture from spec. factor of bound states
- Benchmarking of (d,pγ) as surrogate for (n,γ)
 - ⁹⁵Mo(d,pγ)⁹⁶Mo measurement [normal kin]
 - CN spin distributions Potel et al, PRC 92 (2015)034611
 - HF calculations (J. Esher)
 - Reproduce ⁹⁵Mo(n,γ)⁹⁶Mo cross sections
- Inverse kinematics techniques under development with GODDESS

FRIB
•ORRUBA+GRETINA/GRETA coupling
•ORRUBA + HAGRiD coupling (LaBr₃ array)
Beam energies ≥10 MeV/A ReA12 + "fast" beam

Steve Pain, ORNL

Predictive, complete and consistent nuclear models of heavy nuclei are essential for nuclear astrophysics

- r-process simulations require basic (separation energies) and complex (neutron capture, decay rates, fission) nuclear data in heavy nuclei
- Density functional theory is currently the only available framework capable of providing the necessary microscopic, consistent set of nuclear data inputs
- Investments are needed in
 - Computational DFT for large-scale surveys – including decays
 - UQ methodology
 - Training of US-based workforce
- FRIB data will constrain DFT models
 - Masses and separation energies of neutron-rich nuclei
 - Low-energy spectra

Nicolas Schunck

FRIB Day-1 Science: nuclear astrophysics challenges

Priorities for FRIB theory

- Develop many-body theory that will unify nuclear structure and reactions
- Produce quantified global predictions of beta decays, neutron capture, and fission yields
- Develop predictive model of low-energy cross sections
- Explain properties of cluster structures around the reaction threshold

Ideas/needs for achieving them

- Development of spectroscopic-quality energy density functional for nuclei and neutron stars
- Beyond-DFT models of fission yield characteristics
- Beyond-DFT global models of beta decays, including forbidden transitions
- Beyond-DFT global models of level densities and low-energy multipole strength
- Reaction cross sections from the continuum shell model+RGM
- Advanced statistical tools for uncertainty quantification, model development, data selection, and identification of key experimental data needed
- Development of databases of theoretical results and open-source codes

Impact on/alignment with the experimental effort. Experimental data needed.

• Key measurements: masses and beta-decays of neutron-rich nuclei; neutron capture rates; measurements of fission yields for neutron-rich heavy nuclei.

FRIB

abundance pattern predictions

comparison to astrophysical observables

The *r*-process of nucleosynthesis: connecting FRIB to the cosmos

ICNT/JINA-CEE/ MSU/FRIB June 2016

anticipating FRIB Day 1: nuclear astrophysics

- Produce reliable astrophysical simulations of candidate nucleosynthetic events with realistic microphysics
- Strive to improve key pieces of microphysics (e.g. equation of state in dense matter, neutrino opacities and oscillations) that influence conditions for element synthesis
- Identify the nuclear properties with the greatest leverage on abundance patterns and astronomical observables to recommend for detailed experimental or theoretical study
- Develop new ideas and fresh approaches to connect FRIB measurements to observations

Impact on/alignment with the experimental effort. Experimental data needed.

S

 Key measurements: masses and beta-decay properties of neutron-rich nuclei; neutron capture rates; measurements of fission yields for neutron-rich heavy nuclei.