# **Fundamental Symmetries and FRIB**

J. Singh and J. Engel

August 2, 2017

## Framework

### Rough definition of "Fundamental Symmetries"

Search for beyond-standard-model physics at low energies Study of symmetry-violating interactions in the nucleus

### Examples

0νββ decay and lepton-number violation β decay and breaking/extension of SU(2)<sub>L</sub> EDMs and beyond-standard-model CP/T violation P-violating nucleon-nucleon interaction

### FRIB at day 1 and after can contribute in two distinct ways

- 1. Experiments to see BSM effects online
- 2. Contributions to offline experiments

Preparatory work (e.g. for EDM searches) Finding good isotopes Harvesting isotopes (Greg Severin's talk) Measurements to constrain theory necessary to interpret expts.

## Examples of Experiments of Different Kinds

### **Experiments to see BSM effects**

 $\beta\text{-decay}$  electron spectrum to search for scalar and tensor currents

#### **Preparatory Work**

Laser spectroscopy for EDM experiments (later in this talk)

#### Finding good isotopes for atomic EDM experiments

J=1/2 parity doublets for Schiff moments Higher-spin doublets for magnetic quadrupole moment

#### **Producing Isotopes**

<sup>225</sup>Ra for EDM experiments
<sup>221,223</sup>Rn, <sup>229</sup>Pa for possible EDM experiments
Fr isotopes for PNC experiments

#### and ...

## Measurements to Constrain Theory

- Octupole moment of <sup>225</sup>Ra (planned at ANL)
- <sup>225</sup>Ra on isoscalar target (or vice versa) to measure isoscalar dipole strength?
- Proxy for  $V_{PT}$  (e.g.  $\vec{\sigma} \cdot \vec{r}$ )?
- Magnetic quadrupole operator or proxy?
- Momentum dependence of "g<sub>A</sub> quenching" for ββ decay: charge-changing cross sections at non-zero q?

Let's look at Schiff moments (radially weighted EDMs that transmit T violation to atomic electrons) and focus on <sup>225</sup>Ra...

## **Uncertainties in Schiff Moments**

Schiff operator:

$$S_z \propto \sum_{i=1}^A e_i r_i^2 z_i + \dots$$

Leading-order PT-violating Hamiltonian contains unknown constant in each of three isospin channels. Schiff moment reflects action of both  $S_z$  and  $V_{PT}$ .

|                   | isoscalar             | isovector     | isotensor                |
|-------------------|-----------------------|---------------|--------------------------|
| <sup>199</sup> Hg | 0.005 - 0.05          | -0.03 - +0.09 | 0.01 - 0.06              |
| <sup>129</sup> Xe | -0.005 0.05           | -0.003 0.05   | -0.0050.1                |
| <sup>225</sup> Ra | <b>-1</b> – <b>-6</b> | 4 – 24        | <b>-</b> 3 — <b>-</b> 15 |

Recommended range of normalized Schiff moments corresponding to different terms in  $V_{\rm PT},$  based on spread in reasonable calculations

# Octupole Deformation and <sup>225</sup>Ra



Unlike in Hg, these two states are the whole story.

# Reducing Uncertainty: Ra



 $\langle 1/2^{-}|S_{z}|1/2^{+}\rangle$  correlated with octupole moment, which is extracted from E2 and E3 rates.



Rates in <sup>225</sup>Ra to be measured at ANL.

# Reducing Uncertainty: Ra



Strength of neutron pairing constrained by octupole moment  $\langle 1/2^-|\,S_z\,|1/2^+\rangle$  correlated with octupole moment, which is extracted from E2 and E3 rates.



Rates in <sup>225</sup>Ra to be measured at ANL.

## The Future for Ra

Measurement of isoscalar dipole strength between members of parity doublet?

Operator is isoscalar version of Schiff operator.

Can we measure  $\langle 1/2^{-}|\sum_{i=1}^{A}r_{i}^{2}z_{i}|1/2^{+}\rangle$ ?

Would provide an even better constraint than the octupole moment.

## The Future for Ra

Measurement of isoscalar dipole strength between members of parity doublet?

Operator is isoscalar version of Schiff operator.

Can we measure  $\langle 1/2^{-}|\sum_{i=1}^{A} r_{i}^{2} z_{i} |1/2^{+}\rangle$ ?

Would provide an even better constraint than the octupole moment.

Measurements to help with matrix element of time-reversal violating potential?

In one-body approximation  $V_{PT} \approx \vec{\sigma} \cdot \vec{\nabla} \rho$ 

The closest simple one body operator is  $\vec{\sigma}\cdot\vec{r}$  .

Can we measure  $\langle 1/2^- | \vec{\sigma} \cdot \vec{r} | 1/2^+ \rangle$  or something like it?

What about charge-changing transition strength to isobar analog of  $|1/2^-\rangle$  in  $^{225}\text{Fr}?~$  Axial-charge  $\beta$  decays in other nuclei?

 $V_{PT}$  is similar to two-body current operator in axial-charge channel.

# In the Meantime

Getting Theory Ready for Day 1

Better 0vββ matrix elements

Topical collaboration devoted to this and part of the next item.

- Better calculations of Schiff and anapole moments Will require improved density functionals with well-determined statistical uncertainty.
- Ab initio calculations of interesting beta decay matrix elements, including recoil-order terms
- Improved calculations of radiative corrections in superallowed beta decay

 $W - \gamma$  box diagram particularly important.

Linear response for understanding g<sub>A</sub> quenching

Both ab initio and density-functional methods important.