

Theory Alliance Facility for rare isotope beams

Reactions with rare isotopes : Study of one-neutron knockout : from loosely- to deeply-bound nuclei

Chloë Hebborn and Pierre Capel

August, 10 2020

Introduction

Exotic nuclei are often studied through reactions such as elastic scattering, transfer, breakup, **knockout** etc

One-neutron knockout :

 $P(\equiv c+n) + T \rightarrow c+X$

 \Rightarrow more statistics than exclusive measurements!

Cross sections $\sigma_{ko} = \sigma_{bu} + \sigma_{str}$ ① Diffractive σ_{bu} ② Stripping σ_{str}

Loosely-bound : good agreement Deeply-bound : strong reduction

- → Asymmetry-dependence not seen in other reactions
- ⇒ Which part of the wavefunction KO is sensitive to?

Eikonal model

[Hansen and Tostevin Ann. Rev. Nucl. Part. Sc. 53, 219 (2003)]

 $S_n = 0.5$ MeV and 10 MeV

Description of the projectiles

① Realistic ¹¹Be : $1/2^+$ g.s. $S_n = 0.5$ MeV (one-neutron halo nucleus)

Halo-EFT : uses the separation of scale to expand low-energy behavior with $R_{\rm core}/R_{\rm halo} \sim 0.4$

[H.-W. Hammer et al. JPG 44, 103002 (2017)]

→ At LO effective potential only in the partial-wave s1/2 $V_{s1/2}(r) = V_{s1/2}^{(0)} e^{-\frac{r^2}{2r_0^2}}$ with r_0 cutoff

We constrain $V_{s1/2}^{(0)}$ with separation energy S_n

② Irrealistic ¹¹Be : $1/2^+$ g.s. $S_n = 10$ MeV (5 MeV, 20 MeV)

Beyond Halo-EFT : use a similar potential $V_{s1/2}$ that we fit to S_n (suggestion of D. Bazin and F. Nunes)

Test case ${}^{11}\text{Be}(g.s.) + {}^{12}\text{C} \rightarrow {}^{10}\text{Be} + X @ 68A \text{ MeV}$ Generation of different g.s. wavefunctions with various r_0

[[]C.H. and P. Capel, PRC 100, 054607 (2019)]

Loosely-bound case $S_n = 0.5$ MeV

 \rightarrow increase in the σ_{bu} and σ_{str} (with $\sigma_{bu} \sim \sigma_{str}$)

Loosely-bound case $S_n = 0.5$ MeV

• Larger $r_0 \rightarrow \text{larger ANC}$

 \rightarrow increase in the σ_{bu} and σ_{str} (with $\sigma_{bu} \sim \sigma_{str}$)

- Rescale with the ANC \rightarrow same asymptotics but SF=2.5–1.26 $\rightarrow \sigma_{bu}$ and σ_{str} scale almost perfectly
 - ⇒ Suggests that the good agreement for loosely-bound nuclei might be explained by a fair reproduction of the ANC

< 口 > < 凸

Deeply-bound case $S_n = 10$ MeV

• Larger $r_0 \rightarrow$ larger ANC \rightarrow larger σ_{str} and σ_{bu} (with $\sigma_{str} > \sigma_{bu}$)

< □ > < 同 > < 三</p>

Deeply-bound case $S_n = 10 \text{ MeV}$

- Larger $r_0 \rightarrow$ larger ANC \rightarrow larger σ_{str} and σ_{bu} (with $\sigma_{str} > \sigma_{bu}$)
- Rescale with the ANC \rightarrow same asymptotics but SF=0.2-0.01 σ_{bu} : smaller spread \rightarrow stays mainly peripheral σ_{str} : no scaling and exhibit different shapes $\rightarrow \sigma_{str}$ is sensitive to the inner part of the wavefunction

① From which c-n distance is σ_{str} sensitive?

⁽²⁾ How does it depend on the normalization?

Sensitivity to the inner part of the wave function

① From which c-n distance is σ_{str} sensitive? ② How does it depend on the normalization?

Conclusions and prospects

Knockout : Asymmetry-dependence of the agreement th-exp.

- \Rightarrow Which part of the projectile's wavefunction KO is sensitive to?
- (1) Loosely-bound $S_n = 0.5 \text{ MeV}$: $\sigma_{bu} \sim \sigma_{str}$
 - σ scales with ANC² and is insensitive to the inner part of the g.s. \rightarrow Th.-exp. agreement is probably due to a fair ANC
- ⁽²⁾ Deeply-bound $S_n = 10$ MeV : σ_{str} dominant
 - σ_{bu} stays mainly peripheral
 - σ_{str} is sensitive to the inner part **above** 1.5 fm \rightarrow what determines this range? r_0 ?
 - Non-linear dependence of σ_{ko} on the normalization
 - \rightarrow Validity of the single-particle approximation ?
 - \rightarrow How is it related to the asymmetry plot ? To be continued...

Thank you for your attention