From Electron to Hadron Beams: New Results on Short-Range Correlations

Or Hen (MIT)

Hen Lab

Laboratory for Nuclear Science @

FRIB Theory Alliance Colloquium, September 8th, 2020.

Short-Range Correlations (SRC)

high *relative* and low *c.m.* momentum compared to k_F

<u>r-space</u>

Nucleon pairs that are close together in the nucleus

Why SRC?

Required for a high-resolution, first principle, description of nuclear systems & processes.

NN interaction from QCD & QCD in nuclei

High-density systems

High-q processes (e.g. $0\nu\beta\beta$ decay)

Today: Overview of present And discussion of future

Discussion of future

Pairs \Leftrightarrow Scale Separation

Pair Distance Distributions

Many Body = Constant x Two-Body

Cruz Torres et al., Nature Physics (2020)

Cruz Torres et al., Nature Physics (2020)

Factorization is *Position* Independent

SRC Pairs Density

Scale Separation

R. Cruz-Torres et al., Nature Physics (2020)
R. Weiss et al., Phys. Lett. B 780 (2018)
J.-W. Chen, W. Detmold, J. E. Lynn, A. Schwenk, PRL 119 (2017)
R. Weiss, B. Bazak, N. Barnea, Phys. Rev. C 92 (2015)

Scale Separation and re-interactions

Lots to discuss about theory...

...but this in an experimental talk!

1. JLab

- (e,e'NN): NN interaction
- (e,e'): Pair abundances

2. JINR- (p,2p A-2)n: fully exclusive SRCs

- 3. Neutron Rich Systems
 - Insight from (e,e'N)
 - Interpretability of (e,e')

1. JLab

- (e,e'NN): NN interaction
- (e,e'): Pair abundances
- 2. JINR- (p,2p A-2)n: fully exclusive SRCs
- 3. Neutron Rich Systems
 - Insight from (e,e'N)
 - Interpretability of (e,e')

High-Q² Studies of A = 2 & 3

Great success for theory! [Cracow group]

³H works better than ³He.

Cruz Torres and Nguyen et al., PRL (2020)

High-Q² Studies of A = 2 & 3

Great success for theory! [Cracow group]

³H works better than ³He.

Glauber improves theory. [M. Sargsian]

SCX can explain the trends $4 + \sigma(e,e'p)$

Cruz Torres and Nguyen et al., PRL (2020)

High-Q² Studies of A = 2 & 3

Deuteron data can also help understand the high-resolution picture...

Yero et al., arXiv: 2008.08058 (2020)

Breakup the pair => Detect <u>both</u> nucleons => Reconstruct 'initial' state

Scale Separation and re-interactions

Scale Separation and re-interactions

Mean-field Center-of-Mass Motion

300 – 600 MeV/c: np pairs

Duer, PRL (2019); Duer, Nature (2018); Hen, Science (2014); Korover, PRL (2014); Subedi, Science (2008); Shneor, PRL (2007); Piasetzky, PRL (2006); Tang, PRL (2003); <u>Review:</u> Hen RMP (2017);

Nucleon Distributions Sensitivity

Schmidt et al., Nature (2020)

Spectral function Sensitivity

Neutron data consistency

Korover et al., arXiv: 2004.07304 (2020)

Bound on SRC Dominance of high-p

Korover et al., arXiv: 2004.07304 (2020)

High-Momentum Scaling

Contacts are *universal*!

Scaling of SRC pairs in different nuclei is driven by mean-field physics.

Same for all NN interactions! Same for small-r and high-k!

> *also seen for small-r by Chen & Lynn et al.

Cruz Torres et al., Nature Physics (2020)
Theory that works for (e,e'NN) struggles for (e,e')

Weiss and Denniston et al., arXiv: 2005.01621 (2020)

Need to re-think our *quantitative* interpretation?

Weiss and Denniston et al., arXiv: 2005.01621 (2020)

(e,e'p) to the rescue!

Korover and Denniston et al.

SRC Dominance Onset ~ k_F

- (e,e'NN): NN interaction
- (e,e'): Pair abundances

2. JINR- (p,2p A-2)n: fully exclusive SRCs

- 3. Neutron Rich Systems
 - Insight from (e,e'N)
 - Interpretability of (e,e')

Going Inverse:

Towards Colliders & Radioactive Beams

Scale Separation

Factorization of SRC distribution function:

High-Energy Ion Beam @ JINR Nuclotron

High-Energy Ion Beam @ JINR Nuclotron

SRC @ BM@N: Fragment

(p,2p)X vs. (p,2p)¹¹B

Patsyuk and Kahlbow et al.

Quasi-elastic: (p,2p)X vs. (p,2p)¹¹B

Patsyuk and Kahlbow et al.

(p,2p)¹¹B: Inelastic Vs. Quasielastic

Patsyuk and Kahlbow et al.

First Observation of SRCs

- 23 ¹⁰B events
- 2¹⁰Be events
- \rightarrow *np* pair dominance

Fragment Momenta: Pair c.m. Motion

direct extraction: $\sigma = (156 \pm 27) \text{ MeV/c}$ => small c.m. momentum

Cohen et al., PRL (2018)

Patsyuk and Kahlbow et al.

SRC Pair: Angular Correlation

strongly correlated pair: nucleon momentum not balanced by A-1

-> NN back-to-back emission

Patsyuk and Kahlbow et al.

Factorization of SRC distribution function

 $f(p_{rel}, p_{c.m.}, \theta_{rel,c.m.}) \approx C(p_{c.m.}) \times \varphi(p_{rel})$

JINR Results

- First observation of ISI/FSI suppression using fragment detection.
- First observation of SRCs with bound residual A-2 system:

➢ Direct measurement of pair c.m. motion

Establishment of factorization!

- (e,e'NN): NN interaction
- (e,e'): Pair abundances

2. JINR- (p,2p A-2)n: fully exclusive SRCs

- 3. Neutron Rich Systems
 - Insight from (e,e'N)
 - Interpretability of (e,e')

Going neutron rich:

What do excess neutrons do?

correlate with each other?

correlate with core protons?

Proton vs. Neutron Knockout M. Duer ELECTRON 1 INCIDENT **ELECTRON** TARGET **NUCLEUS NEUTRON** DRIFT **CHAMBERS** PROTON **CHERENKOV COUNTER** TIME OF FLIGHT **ELECTROMAGNETIC** CALORIMETER

Same # of high-momentum p & n

Going neutron rich: What do excess neutrons do?

Correlation Probability: Neutrons saturate Protons grow

Duer Nature (2018)

Going neutron rich: What do excess neutrons do?

Protons 'Speed-Up' In Neutron-Rich Nuclei

Duer Nature (2018)

Precision ^{40,48}Ca (e,e') measurements

~16% more pairs in ⁴⁸Ca!

Nguyen et al., arXiv: 2004.11448 (2020)

Precision ^{40,48}Ca (e,e') measurements

~16% more pairs in ⁴⁸Ca!

Radioactive-ion beams (R³B@GSI)

- (e,e'NN): NN interaction
- (e,e'): Pair abundances

2. JINR- (p,2p A-2)n: exclusive SRCs

3. Neutron Rich Systems
- Insight from (e,e'N)
- Interpretability of (e,e')

- (e,e'NN): NN interaction
- (e,e'): Pair abundances

3. Neutron Rich Systems
- Insight from (e,e'N)
- Interpretability of (e,e')

- (e,e'NN): NN interaction
- (e,e'): Pair abundances

2. JINR

- (p,2p A-2)n: exclusive SRCs

3. Neutron Rich Systems
- Insight from (e,e'N)
- Interpretability of (e,e')

'Our' SRC World

+ Many Theory Collaborators: UW, PSU, HUJI, LANL, ANL, Gent, FIU, Perugia, Pisa, ...

LABORATORY for NUCLEAR SCIENCE

Afroditi Efrain Papadopoulou

Segarra

Andrew **Denniston**

Dr. Adi **Ashkenazy**

Dr. Dien Nguyen

Dr. Florian Hauenstein Dr. Julian Kahlbow

Dr. Tyler Kutz

