

Chloë Hebborn

August, 9 2022

Chloë Hebborn

LECM 2022

August, 9 2022

Exciting time to be a nuclear physicist with FRIB starting!

What is the origin of light elements?

Chloë Hebborn

LECM 2022

Light nuclei, such as Lithium, were already present ~3 minutes after the Big Bang

3 / 17

The Big-Bang nucleosynthesis accurately predicts abundances at early time... but for Lithium isotopes

\rightarrow Need to know accurately ⁴He(d, γ)⁶Li rate

LECM 2022

Reactions at low energy are difficult to measure as the two charged nuclei repulse each other

- \rightarrow Need for accurate prediction to fill the exp. gap at low E
 - Chloë Hebborn

For a complete *ab initio* description, we need both structure... and dynamical clustered description

No core shell-model with continuum

[Navrátil, Quaglioni, Hupin, Romero-Redondo and Calci, Phys. Scr. 91, 053002 (2016)]

Discrete structure information input

Continuous dynamical input (clustering/reactions)

 \oplus Bound states,

narrow resonances

→ short-range

- Bound & scattering states, reactions
 - \rightarrow long-range

LECM 2022

Ab initio predictions are accurate for ⁶Li spectrum but... not perfect

In this work : $N^3LO NN$ force + 3N force NNLO

HPC at LLNL

Accurate prediction of ${}^{4}\text{He}(d,\gamma){}^{6}\text{Li}$

 \rightarrow need to have the right ⁶Li binding

Ab initio prediction fills the experimental gap for ${}^{4}\mathrm{He}(d,\gamma)\,{}^{6}\mathrm{Li}$

 \rightarrow At low *E*, importance of the tail of ⁶Li g.s. : *E*₁₊ and *s*-wave ANC Which electromagnetic transitions drive this capture reaction?

Chloë Hebborn

The S-factor is dominated by E2 and M1 at low energies

E2 larger than previous eval. \rightarrow larger **ANC**, impact on (⁶Li,d)?

The S-factor is dominated by E2 and M1 at low energies

M1 are typically not evaluated in few-body models M1 important at low $E \rightarrow$ which role in other capture reactions?

The S-factor is dominated by E2 and M1 at low energies

E1 evaluated with pheno. prescriptions predicted to be dominant Isovector E1 transitions negligible due to small T = 1 mixing in ⁶Li

What is the uncertainty due to the choice of χ -EFT force & to the finite size of the basis?

Ab initio predictions reduce the uncertainties on the ${}^{4}\text{He}(d,\gamma){}^{6}\text{Li}$ rate by an average factor 7

Small uncertainties thanks to the adjustment of the ⁶Li g.s. energy

[Hebborn, Hupin, Kravvaris, Quaglioni, Navrátil, Gysbers, Phys. Rev. Lett. 129, 042503 (2022)]

\rightarrow Discrepancy in ⁶Li abundances due to exp. syst. uncertainties

Chloë Hebborn

This was only one example, there are many nuclei...

Chloë Hebborn

LECM 2022

August, 9 2022 11 /

Knockout reactions are powerful probes of the single-particle structure of unstable nuclei

Knockout reactions with heavier nuclei and at higher energies, simplications are needed

- effective core-neutron Hamiltonian
- core-target and neutron-target optical potentials

Spectator-core and eikonal approximations

[Hussein and McVoy, NPA 445, 124 (1985)]

Asymmetry dependence of the experimental to theoretical knockout cross section is not understood

Importance of core particle decay for $\Delta S \gg 0$ [PRC 83, 011601(R) (2011)]

 \rightarrow not included in the eikonal theory !

Chloë Hebborn

We develop a new formalism to include many-body core-hole dynamics via dispersive optical potentials

Green's function knockout [Hebborn and Potel, arXiv : 2206.09948]

Structure properties included in the core-neutron dispersive potential !

 \rightarrow Applicable to N-removal & -addition, e.g. knockout, (p,d), (d, p)

Cł	ıloë	Heb	borr

Other recent efforts to support FRIB science

UQ due to the optical potentials in knockout reactions

Integrating microscopic predictions in few-body description : **ab initio** *n*-*T* **optical potentials**

Thanks to my collaborators

Sofia Quaglioni Kostas Kravvaris Gregory Potel

Filomena Nunes Taylor Whitehead

Petr Navrátil Peter Gysbers

Pierre Capel

Guillaume Hupin

Thank you for your attention

Chloë Hebborn

LECM 2022

August, 9 2022 17 / 17