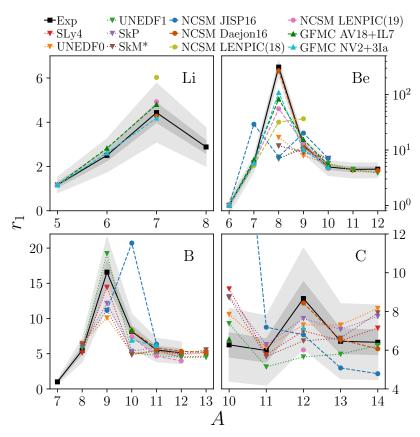
Quantifying alpha clustering in light nuclei from binding energies

Objectives

- Quantify indirectly the degree of alpha clustering in light nuclei using only the binding energies of their partition subsystems as input.
- Systematically evaluate many-body approaches (ab initio, density functional theory) on alpha clustering.
- Bayesian inference of the uncertainties on energies from the one-alpha clustering measure to identify key nuclei for future improvement of nuclear forces.

Impact

• Most state-of-the-art many-body approaches fail to adequately capture alpha clustering in light nuclei.


Office of

Science

• Three-body forces play a critical role.

U.S. DEPARTMENT OF

• Six key nuclei identified: ^{6,7}Li, ⁷Be, ^{10,11}B, and ¹¹C

Accomplishments

One-alpha clustering measures given by various many-body approaches. Most are not included in the 10% relative uncertainty band on experiment (dark gray).

Theory Alliance facility for rare isotope beams

K. Fossez, submitted (2020)