

f Quantum Monte Carlo calculations of $0\nu\beta\beta$ decay matrix elements

Objectives

- Evaluate neutrinoless double beta decay matrix elements in light nuclei using interactions and currents from Chiral Effective Field Theory supported by Quantum Monte Carlo methods.
- Compare with calculations based on computational methods that can be implemented to study nuclei of experimental interest, *e.g.*, ⁴⁸Ca, ⁷⁶Ge, ¹³⁰Te, ⁸²Se, ¹²⁴Sn, ¹³⁶Xe.

Impact

- Calculated neutrinoless double beta decay matrix elements in nuclei of experimental interest are poorly known.
- Benchmark calculations against ab initio results are required to understand the sensitivity of the calculated matrix elements with respect to variations in the adopted nuclear models and many-body computational methods.

Accomplishments

Publication: Pastore et al. Phys.Rev. C97 (2018) 014606; Wang et al. (2019) under revision on Phys. Lett. B; Cirigliano et al. Phys.Rev.Lett. 120 (2018), 202001.

Caption: Transition matrix densities induced by lepton number violating potentials given in momentum space for the ¹⁰He \rightarrow ¹⁰Be and ¹²Be \rightarrow ¹²C decays.